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ABSTRACT

Previous authors (Jackson and Fleckenstein 1957, Mosteller 1958, Noether

1960) have found that different models of paired comparisons data lead to simi-

lar fits. This phenomenon is examined by means of a set of paired comparison

models, based on gamma random variables, that includes the frequently applied

Bradley-Terry and Thurstone-Mosteller models. A theoretical result provides a

natural ordering of the models in the gamma family on the basis of their compo-

sition rules. Analysis of several sports data sets indicates that all of the paired

comparison models in the family provide adequate, and almost identical, fits to

the data. Simulations are used to further explore this result. Although not all

approaches to paired comparisons experiments are covered by this discussion, the

evidence is strong that for samples of the size usually encountered in practice all

linear paired comparison models are virtually equivalent.

Abbreviated Title: Comparing Paired Comparison Models

Keywords: Bradley-Terry Model, Thurstone-Mosteller Model



1. INTRODUCTION

In a paired comparisons experiment, k objects are compared in blocks of size

two. Each comparison of two objects has two possible outcomes: either i is preferred

to j or j is pieferred to i. Successive comparisons of a pair of objects are assumed

to be independent. In addition, comparisons of distinct pairs of objects are assumed

to be independent of each other. This eliminates the notion of a single judge who

compares each of the (k) distinct pairs, as the comparisons in this case would almost

certainly not be independent. A variety of models exist for the analysis of data

from paired comparisons experiments, including the Bradley-Terry model (Bradley

and Terry 1952) and the Thurstone-Mosteller model (Thurstone 1927, Mosteller

1951). Jackson and Fleckenstein (1957) and Mosteller (1958) illustrate that these

two models, as well as several others, provide similar fits to a data set.

A family of paired comparison models based on gamma random variables (Stern

1990) provides a framework for further consideration of the similarity of paired

comparison models. The gamma paired comparison models are a subset of the

class of linear models (David 1988) that includes the Bradley-Terry and Thurstone-

Mosteller models. The probability that i is preferred to j in a gamma paired com-

parison model with shape parameter r is equal to the probability that one gamma

random variable with shape parameter r is smaller than a second gamma random

variable, independent of the first, with the same shape parameter but different scale

parameter. This model is appropriate, for example, if we compare the waiting time

until r events occur in each of two independent Poisson processes with different

rates. The Bradley-Terry model is obtained by choosing r = 1 and the Thurstone-

Mosteller model is obtained as r --+ oo. In these cases, equivalence to the usual

stochastic utility model is obtained by considering a logarithmic transformation of

the gamma random variables (Stern 1990).
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Evidence from three different sources indicates that, for typical sample sizes,

the choice of a particular paired comparison model from among the set of gamma

models seems to have a small effect on the results obtained. In this paper, anal-

ysis of several sports data sets indicates that almost identical fits are obtained by

several models. Close consideration of the case with k = 3 objects provides some

information about the source of the problem and provides an estimate of the sam-

ple size required to distinguish between paired comparison models. Finally, some

simulations generalize the results to larger experiments.

In the next three sections, a variety of paired comparison models are discussed.

The evidence concerning the question in the title of the paper is presented in Section

5.

2. PAIRED COMPARISON MODELS

The natural parameter in a paired comparisons experiment is pij, the probabil-

ity that i is preferred to j. Probability models for paired comparisons experiments

attempt to provide a concise description of the preference probabilities pi., i # j.

Sophisticated models have been developed to account for the possibility of ties,

covariates and order effects. For the purposes of this discussion, only paired com-

parison models that ignore ties, order effects and covariates are considered. By

assumption, the preference probability pij remains constant throughout the exper-

iment. The saturated model for a paired comparisons experiment with k objects

associates a parameter pij with the pair of objects i and j, thus using k(k - 1)/2

parameters. A more parsimonious model assigns a parameter Ai to each object and

takes pi, = P(A,, A) for some function P(.,.). This type of model uses only k

parameters. The Bradley-Terry and Thurstone-Mosteller models are examples of
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this type. These models are now considered in more detail, leading to a family of

paired comparison models used throughout this study.

The Bradley-Terry probability model assumes the probability that i is preferred

to j can be written as

(BET) A,

Over time this expression has been derived in many ways including a derivation

based on Luce's (1959) Choice Axiom and one based on maximum entropy (Joe

1987). Two motivations that are central to this paper are the gamma random

variable motivation (Stern 1990) and the linear model derivation (David 1988, Latta

1979). Throughout the paper, paired comparisons experiments are discussed using

the terminology of a sports competition because the data in Section 5 is of this

form. Suppose that team i scores points according to a Poisson process with rate A,

and team j scores points according to a Poisson process with rate A,. Furthermore,

suppose the two Poisson processes are independent. The waiting time for a point

to be scored in either process is an exponential random variable, or equivalently,

a gamma random variable with shape parameter 1. Then, the probability that

team i scores one point before team j is the probability that Xi "- r(1, A,) (x,

a gamma random variable with shape parameter 1 and scale parameter A,) is less

than X - r(1,A,) for independent random variables X,Xj. This probability is

the Bradley-Terry preference probability (Bradley and Terry 1952). Holman and

Marley derived the Bradley-Terry model in terms of exponential random variables

(equivalent to the above formulation) in 1962 (see Luce and Suppes 1965).

Other gamma paired comparison models are obtained by comparing gamma

random variables with shape parameters other than one. The point scoring moti-

vation suggests models with integer-valued shape parameter, but gamma random

4



variables are defined for any shape parameter r greater than zero. Suppose that

G% (r) is a stochastic process with independent increments having the gamma distri-

bution, so that Gx (r2) - G, (r,) has the gamma distribution with shape parameter

r2- r, and scale parameter A. Thus far, G, (r) has been interpreted for integer r

as the waiting time for r points to be scored. However, the progress of two gamma

stochastic processes G, (r) and G,, (r) can be compared for any value of r > 0 sug-

gesting the possibility of gamma paired comparison models with non-integer shape

parameters.

For the gamma paired comparison model with shape parameter r, the prefer-

ence probability is given by

) Pr(X, < ,) [ Z ' exp (-Ajz,) Az7- exp (-Ajzj)
P,;r _(r) r(r)

0 0

00 Av-J J zJexp(-z)=

r(r)r(r) dz =.
o 0

The final notation indicates that this probability depends only on the ratio of the

scale parameters of the gamma random variables. Since the probability is unchanged

if each A, is multiplied by the same constant, E Ai = 1 is adopted as a convention.

By reversing the roles of i and j, the natural relationship gr (A, /A.) = 1 - g, (Aj /A,)

is obtained. The preference probability is increasing in the ratio Ai /Aj, and for A, >

Aj, p(' ) is increasing in r. The first of these results indicates that the probability

that the process with the higher rate is the first to achieve r points increases as

the difference between the rates of the two processes becomes larger. This is easy

to verify by inspection of the expression (1). The second result implies that, if i

scores points faster than j, then comparing the processes after they have evolved

for a long time favors process i. If we take "7 = A,/A,, this can be demonstrated by
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examining - and P" as functions of -y and r. The first derivative is equal to
Or 8r87

zero at y = 1 and tends to zero as -y --+ oo for any r. The mixed second derivative is

positive at -y = 1 for any r, so the first derivative is positive for -y slightly larger than

one. The second derivative remains positive until some critical value after which it

is always negative. Given this second derivative behavior, !f- must be positiveOr

for all A , > A3. It follows that when A, < A,, p') decreases as r increases.

Following David (1988), a set of preference probabilities p,,, i : j are said

to satisfy a linear model if there exist real numbers v1 ,... , vk such that p, =

H(v, - v,) for H(.) monotone increasing from H(-oo) = 0 to H(oo) = 1 with

H(x) = 1 - H(-z). The function H(.) is the cumulative distribution function

(c.d.f.) of a random variable symmetric around zero and is called the defining

distribution of the linear model. The parameters vi measure the positions of the

k teams on a linear scale. A linear model with defining distribution H is called

a convolution type linear model if H can be derived as the distribution of the

difference between two independent random variables with common c.d.f. F(.) and

different location parameters. In this case F is called the sensation distribution of

the convolution type linear model. The Bradley-Terry model is obtained by taking

vi = InAi, and vj = InAj, with H(z) = (1 + exp(-x)) - ', the c.d.f. of the logistic

distribution (Bradley 1953), and F(x) - exp(-e- ), the c.d.f. of the extreme value

distribution (Davidson 1969).

It turns out that, for any r, the gamma paired comparison model can be ex-

pressed as a convolution type linear model where the density of the sensation dis-

tribution is

f(X) = - -e xp(- (-w.))
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with vi = In A,, and the density of the corresponding defining distribution is

h, (x) r(2r) .- r

r(r)r(r) (1 + e--)2 " "

Integrating h, (.) and evaluating the result at z = In A, - In Aj leads to the pref-

erence probability given in expression (1). As r -- o, a gamma random variable

with shape parameter r tends to a normally distributed random variable. Thus the

gamma model with r large is similar to a convolution type linear paired compar-

ison model with Gaussian sensation distribution, and therefore Gaussian defining

distribution. The Gaussian linear model is described by Thurstone (1927) and re-

fined by Mosteller (1951). For small values of r, the gamma model is similar to

the convolution type linear model whose sensation distribution is the ordinary ex-

ponential distribution with a location parameter (Mosteller 1958, Noether 1960).

Formal statements describing the limiting behavior of the gamma model for small

or large r can be found in Stern (1987, 1990).

For the remainder of this article, discussion is focused on gamma paired com-

parison models, or equivalently the subset of convolution type linear models that

they represent. This is a particularly interesting family because it includes the most

popular approaches to paired comparisons experiments in a single family, indexed

by the single parameter r. Naturally, there are linear models that are not convolu-

tion type linear models (the uniform model considered by Smith (1956), Mosteller

(1958), Noether (1960)) and other convolution type linear models (for example,

those with the Student's t-distribution or the Cauchy distribution as the defining

distribution) that are not considered here. Thus, any answer to the question posed

by the title of the article is incomplete. Nonetheless, the evidence indicates that,

within the class of linear models, all models are essentially equivalent. In order to

further discuss the empirical evidence, we consider Latta's (1979) partial ordering
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of paired comparison models.

3. COMPOSITION RULES AND A PARTIAL ORDERING OF MODELS

As described earlier -1") = g, (A, /A) is increasing in the ratio of scale parame-

ters and, for fixed A, < A-, is decreasing in r. These facts are illustrated in Figure 1

which shows the value of (') for r between 0.01 and 100 when A, < \j. The value

of (" for A, > Aj is obtained from g,(A,/A ) = 1 - g,(,j/ A,). As illustrated in

Figure 1, different ratios of the A, are required to obtain the same value of pj for

different values of r. It is ordinarily the case that the estimates of A,, i = 1,..., k,

which are denoted by A,, i = 1,... , k, are of less interest than the fitted preference

probabilities Pi. = g,. (,/3). For example, in comparing the results of different

paired comparison models, indexed by different values of r, we find the fitted values

to be the relevant means of comparison.

A property of all linear models is that pik can be computed from p, and pik.

The formula for this computation, called the triples function by Yellott (1977) and

the composition rule by Latta (1979), defines a function G(., .) such that Pik =

G(pij,pk). For the gamma model with shape parameter r, the compositon rule

can be expressed in terms of the inverse function gr- '(p) = {1: gr (-y) = p}, where

-y is a ratio of scale parameters. The inverse is well defined since g, (-y) is monotone

in -y. The composition rule for the gamma model with shape parameter r is

, = gr ', g' (2)

As an illustration consider the Bradley-Terry model, where g, (-Y) = Y/(y + 1) and

g 1 (p) = p/(1- p). If -Ix) 0.6 and _(1) = 0.8, then A,/ j = 1.5 and \,Ak = 4,

from which \, /Ak = 6 and -I) = 0.857. The composition rule is illustrated in Table

8



1 for a variety of values of p,, Puk and r. Table 1 also includes the composition rule

for convolution type linear models with the normal sensation distribution and the

exponential sensation distribution. The values shown in Table 1 are for the section

of the unit square in which Pik > 1/2, (1 - pi-k) < p,, - Pik. Values of the

composition rule Pij, Pyk in other sections of the unit square (e.g. pi, = 0.6, Pik =

0.1) can be obtained by applying the following properties of the composition rule

G (Latta 1979):

(i) G(pi, ) = pj

(ii) G(Fi, ,I - p, .) 2 -

(iii) G(pj,,pjk) = G(pjk,p.,) (symmetry)

(iv) G(p 1 ,pjk) = 1 - G(1 - p,j,1 -pik)

(v) Pik = G(pjj,pjk) 4= pij = GCPk,l - p .) 4= pik = G(1 -pijpk).

These properties are easy to verify for the gamma models. Consider property (iii)

which is proved by a series of equalities using g- (p) = 1/g- 1 (1 - p) and g, (y) -

1 - gr.(1/),

G-p 1-g '(--) g(pjk)) = gr( 1

1 - G(1 - P,,,1 - Pk).

Table 1 indicates that there is not much change in the value of pik obtained for fixed

p,, and Pik as r varies from 0.01 to 100. The limiting behavior of the gamma models

for small and large r is also demonstrated in Table 1. Burke and Zinnes (1965) found

that the composition rules of the Bradley-Terry and Thurstone-Mosteller models

are quite similar. This result is also demonstrated in Table 1.

Latta (1979) introduces a partial ordering on paired comparison models. The

paired comparison model A is more extreme than the paired comparison model B if
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for all (Pt, ik) E {(0.5, 1.0) x (0.5, 1.0)}p, Ap) > p, B, with strict inequality for some

pair. As before, the definition is given in terms of one quadrant of the unit square,

since the definition is extended to the remainder of the unit square via properties

(i)-(v) above. Latta gives an algebraic proof that the Thurstone-Mosteller model

is more extreme than the Bradley-Terry model and proves the following theorem

that gives a sufficient condition for determining whether one linear model is more

extreme than a second in terms of the densities of the defining distributions.

Theorem (Latta 1979 p.369): Suppose that

(A) h. and hb are densities whose associated c.d.f.'s, Ha and Hb, satisfy the two

conditions (1) H(x) = 1 - H(-x) and (2) H-'(p) exists for p E (0, 1).

(B) for every c > 0 there exists N (c) > N 2 (c) > 0 such that

(i) ItI < N2 (c) => hb(t) < ch.(ct)

(ii) N2 (c) < It I < N (c) = hb (t) > ch. (ct)

(iii) ItI > N (c) =- hb(t) < ch.(ct).

Then the linear model based on hb is more extreme than the linear model based on

ha.

The following proposition applies this theorem to gamma paired comparison

models.

Proposition 1. If r, > r 2 then the gamma paired comparison model with shape

parameter r, is more extreme than the gamma paired comparison model with shape

parameter r2

Proof. The result is demonstrated by showing that the conditions in Latta's the-

orem are satisfied by the densities

r(2r,) C-"" r(2r2 ) e
h, ( r(r,)r(r,) (1 + e-)2,. and hr. W = r(r2)rfr 2) (1 + e-)2r.
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The densities satisfy the conditions in (A) and therefore we consider the ratio

R(t) = h, (t) = I r(2r,)r(r )r(r2)2, (cosh i)-27 (cosh t)2rI
ch,(ct) c r(2r2)r(r)'(r,)22 rj 2 2

where cosh(x) = (e2 + e-")/2, and the derivative of the ratio

aR = R(t)(cr2 tanh ct - r tanli

where tanh(z) = (e2 - e-')/(e- +e-2). As the densities hr1 , h,, and the ratio R(t)

are symmetric we consider only t > 0. Form the function

k (r) =r(2r)

r(r)r(r)22r

from the coefficient of hr (z). Then it can be shown, using formulas for r(r) and

r'(r) from Chapter 6 of Abramowitz and Stegun (1964), that k(r) is increasing in

r and k(r)/r is decreasing in r. The conditions (B) of the theorem are verified by

considering c in three regions, c < 1, c > r, /r 2 and the intermediate range.

For c < 1, aR/at = 0 for t = 0 and aR/at < 0 for t > 0. Also, R(O) > 1

since ri > r2, c < 1, and k(r) is increasing in r, and R(t) is less than 1 as t -- 00.

Thus, hr, starts above hr,, the densities cross once and then h,, remains below hr,

after the crossing. The conditions of the theorem are satisfied with N 2 (c) = 0. In a

similar manner, we find that when c > r,/r2, aR/at > 0 for t > 0, R(0) < 1 (since

k(r)/r is decreasing in r), and R(t) is greater than 1 as t -4 o. The conditions of

the theorem are satisfied with N, (c) = co.

For intermediate values of c, R(0) may be greater than one, less than one or

equal to one. However, the derivative has at most one change of sign, as can be

verified by showing that the ratio (cr 2 tanh cx)/(r, tanh x) is monotone decreasing.

It turns out that for c < \i --,/r2 there are no changes of sign of the derivative

and for c > N/7 -r the derivative is initially positive and becomes negative. If
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R(O) < 1 then R(t) increases initially and then decreases below one and remains

there as t --+ oo, whereas if R(O) > 1 then R(t) may decrease or increase initially

but eventually ends below one. In either case, the conditions of the theorem hold,

as the densities intersect at most twice (equivalently the ratio R(t) is equal to one

for at most two values of t). Thus, the conditions of the theorem are verified for all

values of c > 0. .

This section and the preceding section focus attention on a subset of the convo-

lution type linear models for paired comparisons experiments. The gamma paired

comparison models include the most popular paired comparison models and are

ordered by the extremeness of their composition rules. After briefly discussing in-

ference for paired comparisons experiments, the empirical phenomenon that many

models provide similar fits to a data set is examined by considering models that are

extreme points in the family of gamma models.

4. INFERENCE

In the paired comparisons experiment with k objects, i and j are compared

n -- n,1 times, with i preferred to j in ai - of the comparisons. No ties are

permitted. If successive comparisons are independent, then a,, is a binomial random

variable with nj trials and the probability of a success on any trial is g, (. /A-

Finally, if comparisons among different pairs of objects are independent then the

likelihood for the entire data set is the product of (k) binomial likelihoods. For fixed

r, the maximum likelihood estimates of the scale parameters A are obtained using a

combination of Newton-Raphson and steepest descent steps. This approach works

well except for small values of r, where an iterative approach (Ford 1957, Stern

1987) is required until the solution is nearby. The likelihood can not be maximized
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if one object is always preferred to its competitors or if one object is never preferred

to its competitors. To maximize the likelihood over r, the likelihood is evaluated

for a grid of r values. This is more straightforward than directly incorporating r

into the Newton-Raphson/steepest descent maximization.

To assess goodness of fit, consider the likelihood ratio test for the null hypoth-

esis that the gamma model with shape parameter r (viewed as being fixed for the

purposes of this discussion) is adequate versus the alternative hypothesis that max-

imizes each binomial likelihood separately. In the latter case, pij is estimated by

ai /nj, while in the former pi, is estimated by g, (A./Aj. The alternative hypoth-

esis might be preferred if the data contains many inconsistent triads of the form

pi, > 0.5, Pik > 0.5, pki > 0.5. These triads are not consistent with the property of

strong stochastic transitivity (p,p ik _ 1/2 implies Pik > max(pj,pjk)) (David

1988) that is implicitly assumed by all convolution type linear models. The usual

test statistic for the above hypothesis, which we use as a measure of goodness of

fit, is

Q1 =2 E Eaj log a1,i /n- i

If the gamma model is correct and the n. are large, then Q1 has the chi-square

distribution with the number of degrees of freedom equal to the difference between

the number of free parameters in the two likelihoods, 1 (k - 1)k - (k - 1) = 1 (k -

1)(k - 2). In practice, r is estimated and should be treated as a parameter for

purposes of the goodness of fit test. However, models with different values of r are

considered as different models in the following section and then compared to each

other. Therefore r is treated as fixed in the next section. Notice that the usual

likelihood ratio procedure can not be used to test whether one gamma model is

superior to another since the models are not nested. Q, is used to compare the fit
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of the models in the following section.

5. ARE ALL LINEAR MODELS THE SAME?

Consider the 1989 American League baseball season as a paired comparisons

experiment to determine the relative ability of the fourteen teams. In the following

matrix A, each team is represented by one row and column. The entries in row i,

aij, correspond to the number of wins for team i in contests with team j.

- 6 8 7 6 8 11 5 5 5 7 3 7 11
7 - 6 7 8 7 10 5 6 6 9 4 6 6

5 7 - 6 7 8 11 7 4 4 6 6 5 7
6 6 7 - 8 10 7 5 4 5 5 9 7 2
7 5 6 5 - 4 7 3 6 6 5 6 8 6
5 6 5 3 9 - 5 2 8 7 7 5 6 5

2 3 2 6 6 8 - 4 6 1 4 5 4 8
7 7 5 7 9 10 8 - 6 8 8 7 9 8
7 6 8 8 6 4 6 7 - 9 8 7 9 7

7 6 8 7 6 5 11 5 4 - 6 11 7 8

5 3 6 7 7 5 8 5 5 7 - 8 7 10
9 8 6 3 6 7 7 6 6 2 5 - 7 8
5 6 7 5 4 6 8 4 4 6 6 6 - 6
1 6 5 10 5 7 4 5 6 5 3 5 7 -

The fourteen teams in the American League are divided into two seven team di-

visions. The top seven rows represent the teams in one division and the bottom

seven rows represent the teams in the other division. Teams play 13 games against

each team in their division and 12 games against each team in the other division.

No ties are possible. One game, between team 5 and team 14, was cancelled due to

inclement weather.

We consider the fit obtained by applying gamma paired comparison models

to the results of baseball games even though the point scoring process in baseball

is not similar to a Poisson process. The maximum likelihood estimates for gamma

models with r ranging from 0.1 to 50 were obtained, and the goodness of fit statistic
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Q, computed for each model. The values of Q1 range from 81.47 for r = 0.1 to

81.19 for r = 50. The Bradley-Terry model has Q1 = 81.22. The maximum of the

likelihood, equivalent to the minimum value of Q1, over the values of r considered

here is obtained at r = 50 (approximately the Thurstone-Mosteller) model. On the

one hand, we have the positive result that the gamma models provide an adequate

fit to the data (values of Q, should be compared to the chi-square distribution with

78 degrees of freedom in this case). However, the variation among models is so small

that no model is obviously preferred to the others. If r is viewed as a parameter

of the model and f indicates the value of r that maximizes the likelihood, then an

asymptotic 95% confidence interval for r includes all values of r such that Q, within

3.84 (the upper 5% point of the chi-square distribution on one degree of freedom)

of the minimum value of Q1. For this data set the confidence interval contains all

values of r between 0 and 50 (larger r were not considered). The largest difference

between the residuals of one gamma model (the difference between the matrix A

and the fitted values obtained by a given model) and the residuals of a second is

0.17. The magnitude of the residuals range from 0 to 4.79 so that the variation

among models is much smaller than one might expect. Large residuals typically

correspond to extreme results, pairs in which one team dominates another despite

the fact that each team won at least 35% of their games overall. The results for

the 1989 American League season as well as nine other baseball data sets and five

recent basketball seasons (teams play each other between 2 and 5 times) are given

in Table 2. The results from five football seasons, in which teams play each other

0, 1 or 2 times, are also given. The chi-square approximation is inappropriate for

the football data due to the small sample sizes. However, the similarity of the fit

provided by different values of r is striking. In each case but one, the values of Q,

are either monotone increasing or monotone decreasing indicating that the "best"
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model is obtained by using the largest or smallest value of r. The results of the

sports data sets reinforce the earlier results of Mosteller (1958) and Jackson and

Fleckenstein (1957).

To investigate more thoroughly why this occurs, some calculations for artificial

data are considered. Consider data that is generated from the gamma model with

shape parameter r = 0.1, pi, = 0.9, pyk = 0.9, and as indicated by the composition

rule, p, = 0.9803. Initially assume that 100 comparisons of each pair are carried

out, with results exactly matching the model, i.e. i is preferred to j in 90 out of 100

comparisons, j is preferred to k in 90 out of 100 comparisons, and, to be precise, i

is preferred to k in 98.03 comparisons. This represents a data set with no sampling

variability. Gamma models with other values of r can be fit to this "observed" data,

equivalent to misspecifying the model. Naturally, r = 0.1 provides a perfect fit to

the data, Q, = 0. Even the most extreme model considered, r = 50, has a small

value of the goodness of fit statistic Q, = 1.58. Recall that, for an experiment with

3 objects, when testing a particular gamma model against the alternative that each

p,, is estimated separately, Q, can be compared to the chi-square distribution on

1 degree of freedom. Thus 100 comparisons per pair are not sufficient to reject the

r = 50 model when the data is generated by the r = 0.1 model with no error or

variability. Noether (1960) applied the same approach using an alternative measure

of fit. Using Q, enables us to determine the sample size required to distinguish

between models. At usual significance levels, 250 observations of each pair are

required to reject the r = 50 model as inadequate (compared to the saturated

model) when the data is generated by the r = 0.1 model. The same analysis was

repeated for a variety of p,, and Pk values, specifically, a grid where pi. and pik were

multiples of 0.05. The result described above is the scenario for which the models

differed by the largest amount. In other cases 500, 1000 or more comparisons of
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each pair are required to distinquish the r = 0.1 model from the r = 50 model. Even

larger sample sizes are required to distinguish the Bradley-Terry model (r = 1) from

other gamma models.

The previous analysis and that of Noether (1960) ignore the variability that

occurs in samples. If random paired comparisons experiments are simulated in

which 100 comparisons of each of the three pairs of objects, i versus j, i versus

k, and j versus k, are generated, then the results are similar. For the example

discussed in the preceding paragraph, the average goodness of fit statistic over 1000

replications for the model that generated the data (r = 0.1), was 1.133 and the

standard deviation of the statistics was 1.534 (consistent with the null distribution,

chi square on one degree of freedom). The average goodness of fit statistic for the

r = 50 model is 2.619 and the standard deviation is 3.018. The average difference

between the two models is 1.486, slightly smaller than the result obtained from data

with no variability. The r = 50 model provides a better fit than the model that

generated the data in 31% of the samples. Simulations for five objects indicate again

that several hundred comparisons of each pair are required to distinguish between

models. The required sample size is smallest in those data sets for which some of

the p,, are extreme.

For experiments with fewer comparisons of each pair, the extreme probabilities

used above frequently produce simulated data sets such that i is always preferred

to j and k. Maximum likelihood estimates can not be obtained for such data sets.

Simulations were carried out using less extreme values of p,,, Pik, Pik. Consider

1000 simulated data sets consisting of 20 comparisons of each pair of three objects

with r = 0.1, p., = 0.6, Pik = 0.9, pik = 0.9210. The average difference between

the goodness of fit statistic for r = 0.1 and the goodness of fit statistic for r = 50 is

0.205. The incorrect model, r = 50, is preferred for 43% of the data sets. It is more
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difficult to distinguish between the models in this case due to the decreased sample

size (number of comparisons) and the less extreme preference probabilities.

6. DISCUSSION

The sports data sets and simulations seem to answer Mosteller's (1958 pg 284)

call to "explore the sensitivity of the method of paired comparisons to the shape of

the curve used to grade the responses". The gamma models provide a convenient

family of models indexed by a single parameter that can be used to explore the

question. By comparing models at extreme values of the shape parameter, the

Thurstone-Mosteller model (r large) and the exponential model (r near zero), over a

wide range of data sets and simulation scenarios, we find that the paired comparisons

analysis is not very sensitive to the choice of distribution within the class of linear

models. Moreover, in experiments with three objects, it appears that at least 250

comparisons of each pair of objects are required to distinguish between models using

a goodness of fit test statistic. The work of Mosteller (1958) and Noether (1960)

shows that the linear model defined by the uniform distribution (not part of the

gamma models but more extreme than even the Thurstone-Mosteller model) also

provides a similar fit.

In part, this result seems to be an example of the similarity of many distribu-

tions at the center of the distribution (see Cox 1970 for more details). The similarity

between the fits obtained with the Bradley-Terry and Thurstone-Mosteller models

is not surprising given the similarity of the logistic and normal distribution func-

tions. The linearity assumption of the paired comparison models is also a part of the

explanation. This assumption leads us to only consider strongly transitive models

as the k objects are assumed to be rank ordered on a linear scale. The particular
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distribution used to fit the linear model does not seem to be as important as the

determination of whether a linear model is appropriate.

Some data sets will be consistent with simpler models, for example the objects

may be organized as groups of similar objects. Then a linear model with some

parameters set equal to each other will be sufficient. In other cases, those with

inconsistencies for instance, a model that assigns one parameter per object will not

be sufficient. This leads to more sophisticated models (Davidson and Bradley 1969,

Hiyashi 1964, Marley 1988) that allow objects to be compared on one of several

possible dimensions. Item i might be preferred to item j on one dimension but

j might be preferred on other dimensions. The outcome of a paired comparison

depends on which dimension(s) are used to compare the objects. The nature of

the comparison experiment must dictate which model is appropriate. The compre-

hensive study here suggests that if a linear model is selected, the particular linear

model does not have a large effect on the analysis for the usual sample sizes.

The similarity of fits among the linear models seems to also hold in experi-

ments in which more than two objects are compared at a time. The order statistics

ranking models described by Critchlow, Fligner and Verducci (1990) are the natural

extension of the linear models to such experiments. Simulations like those described

here indicate that the fit obtained by order statistics models is not sensitive to the

distribution used.
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Figure 1. Preference probabilities in the gamma paired comparison model as a
function of the ratio of the scale parameters A,/A,.
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Table 1. Value of Pik Obtained for Different Gamma Models

P Pjk Exponential (0.01) (0.1) (1) (10) (100) Normal

0.2 0.9 .75000 .74996 .74639 .69231 .67218 .67022 .67001
0.3 0.8 .66667 .66661 .66198 .63158 .62513 .62453 .62446
0.3 0.9 .83333 .83331 .83094 .79412 .77743 .77571 .77552
0.4 0.7 .62500 .62494 .62055 .60870 .60700 .60684 .60682
0.4 0.8 .75000 .74996 .74681 .72727 .72236 .72188 .72183
0.4 0.9 .87500 .87498 .87340 .85714 .84905 .84817 .84807
0.6 0.6 .68000 .68005 .68356 .69231 .69367 .69380 .69382
0.6 0.7 .76000 .76004 .76301 .77778 .78126 .78160 .78164
0.6 0.8 .84000 .84003 .84202 .85714 .86260 .86317 .86323
0.6 0.9 .92000 .92001 .92101 .93103 .93684 .93752 .93760
0.7 0.7 .82000 .82003 .82253 .84483 .85203 .85278 .85287
0.7 0.8 .88000 .88002 .88170 .90323 .91286 .91392 .91403
0.7 0.3 .94000 .94001 .94085 .95455 .96336 .96442 .96454
0.8 0.8 .92000 .92001 .92114 .94118 .95240 .95369 .95384
0.8 0.9 .96000 .96001 .96057 .97297 .98194 .98301 .98313
0.9 0.9 .98000 .98000 .98029 .98780 .99402 .99473 .99481
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Table 2. Comparing Models on Sports Data Sets

League and Season Teams r = 0.1 r 1.0 r = 10.0 r = 50.0

1989 American League Baseball 14 81.4704 81.2221 81.1914 81.1888
1986 American League Baseball 14 73.6317 73.6597 73.6610 73.6611
1985 American League Baseball 14 89.0463 89.1551 89.1786 89.1806
1984 American League Baseball 14 86.8979 86.8070 86.7829 86.7809
1983 American League Baseball 14 58.5468 58.5953 58.5932 58.5929
1989 National League Baseball 12 51.5812 51.5357 51.5314 51.5310
1986 National League Baseball 12 50.5396 50.0067 49.9121 49.9039
1985 National League Baseball 12 56.7934 56.6084 56.5811 56.5788
1984 National League Baseball 12 53.3042 53.4228 53.4357 53.4368
1983 National League Baseball 12 64.7119 64.7488 64.7516 64.7518
1981 National Basketball Assoc. 23 238.843 239.257 239.671 239.715
1980 National Basketball Assoc. 22 210.316 208.117 207.578 207.532
1979 National Basketball Assoc. 22 224.593 223.633 223.447 223.431
1978 National Basketball Assoc. 22 181.805 181.713 181.730 181.731
1977 National Basketball Assoc. 22 222.933 223.512 223.613 223.622
1986 National Football League 28 152.877 153.056 152.766 152.728
1985 National Football League 28 169.866 169.782 169.386 169.343
1984 National Football League 28 156.969 156.769 156.402 156.358
1983 National Football League 28 186.809 186.660 186.482 186.461
1981 National Football League 28 192.906 194.526 194.694 194.698
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